Introduction

Code-switching (CS): going back and forth between languages within a speaker turn.
NLP word-level metrics allow, for any four-word sequence:

$$
-1 \text { switch: } \mathrm{w}_{\mathrm{L} 1} \mathrm{~W}_{\mathrm{L} 1} \mathrm{~W}_{\mathrm{L} 2} \mathrm{~W}_{\mathrm{L} 2}
$$

-3 switches: $W_{\mathrm{L} 1} \mathrm{~W}_{\mathrm{L} 2} \mathrm{~W}_{\mathrm{L} 1} \mathrm{~W}_{\mathrm{L} 2}$
Problems:

1. CS is not equally likely between any two words, and
2. single-word incorporations and multi-word strings are not created equal.

it was a general store,	'it was a general store,
vendían de todo.	they sold everything.'

vendían de todo. they sold everything.'

Example of Across IU CS
y para nosotros it was a snap, 'and for us it was a snap,'
[10, 01:23-01:24]
Example of Within IU CS

Syntactic-Prosodic CS

 PatternsEquivalence Constraint (EC): CS is avoided at points of word order incompatibility (Poplack, 2013:586; Sankoff, 1998). Intonation Units (IUs): speech segments "uttered under a single, coherent intonation contour" (Du Bois et al., 1993:47). IU-Boundary Constraint: CS is favored across IU boundaries (cf. Torres Cacoullos and Travis, 2018: 51).

Lone Items vs. MultiWord Strings

Lone items: are disproportionately nouns, are placed according to the word order of the surrounding matrix language, and participate in the constructions of that language.
Multi-word strings: are placed at cross-language equivalence points, while the internal constitution of each string is consistent with the grammar of its respective language.

New Mexico Span-Eng Bilingual (NMSEB) Corpus

16,957 prosodic sentences (43\% English, 42\% Spanish, 15\% both); 5 transcribed recordings ($4.8 \mathrm{hrs}, \sim 48 \mathrm{k}$ words)

Fig. 1: IU-Boundary Constraint: CS is four times more likely at the boundary of IUs than within them for NMSEB (adapted from Trawick, 2022: 3.4).

CS Metrics

Multilingual Index (M-Index) (Barnett et al., 2000)
k is the number of languages,
p_{j} is the number of tokens in language j over the total number of tokens in the corpus:

$$
\text { M-Index }=\frac{1-\sum p_{j}^{2}}{(k-1) \cdot \sum p_{j}^{2}}
$$

We only consider IUs eligible if they contain ' S ' or ' E ' language tags.
Integration Index (I-Index) (Guzman et al., 2017): the probability of CS in a corpus at any given token boundary. n is the number of tokens, and $S\left(l_{i}, l_{j}\right)$ is 1 if there's a switch, 0 otherwise:

$$
\text { I-Index }=\frac{1}{n-1} \sum_{1 \leq i=j-1 \leq n-1} S\left(l_{i}, l_{j}\right) .
$$

Across-IU I-Index: We record the binary measure: is there a switch between the i th and j th IU?
Within-IU I-Index: We record the binary measure: is there a switch within the i th IU?
We also consider two perspectives: one with only eligible IUs containing ' S ' and/or ' E ', and one also including ' L ' (lone items).

Results

Figures 2-4: IU-based language distribution graphs elucidate CS metrics. English IUs are in purple, Spanish are yellow. M-Index is depicted by extent of each color, I-Index (AcrossIU) by width (or number) of bands. Compare speakers 03 and 10 (top) vs. 05 (bottom).

Corp	$\begin{array}{\|l} \text { M-Index } \\ \text { (S/E) } \\ \hline \end{array}$	I: Across		I:W/in	
		no Ls	Ls incl.	no Ls	Ls incl.
05	0.52	0.03	0.04	0.0	0.01
27	0.57	0.07	0.09	0.0	0.02
03	0.94	0.15	0.18	0.01	0.04
16	0.97	0.08	0.11	0.01	0.03
10	0.98	0.16	0.17	0.01	0.03

M - and $\mathrm{I}-$ Indexes are independent: compare 16 and 10. Across-IU I-Index is greater than Within-IU I-Index for all speakers. Lone items have little impact on Across-IU I-Index but substantial impact on Within-IU I-Index (as large as 300\% for 03).

Conclusion

1. All speakers disfavor within-IU multi-word switching, regardless of speakers' M- or I-Indexes.
2. Bilinguals share the preference for CS to occur across IU boundaries (IU-Boundary constraint). This is blurred when lone items are not distinguished
3. IUs are a vital unit of analysis in future development of CS datasets.

Acknowledgements

NSF support to Rena Torres Cacoullos and Catherine Travis (BCS 1019112/1019122) and to Rena Torres Cacoullos and Shana Poplack (1624966) is gratefully acknowledged.

